Search results for "Acceleration of particle"

showing 10 items of 18 documents

XMM-Newton observation of the supernova remnant Kes 78 (G32.8-0.1): Evidence for shock-cloud interaction

2017

The Galactic supernova remnant Kes 78 is surrounded by dense molecular clouds, whose projected position overlaps with the extended HESS gamma-ray source HESS J1852-000. The X-ray emission from the remnant has been recently revealed by Suzaku observations, which have shown indications for a hard X-ray component in the spectra, possibly associated with synchrotron radiation. We aim at describing the spatial distribution of the physical properties of the X-ray emitting plasma and at revealing the effects of the interaction of the remnant with the inhomogeneous ambient medium. We also aim at investigating the origin of the gamma-ray emission, which may be Inverse Compton radiation associated wi…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaHadronSynchrotron radiationFOS: Physical sciencesElectronAstrophysicsISM: individual objects: Kes 7801 natural sciencesSpectral linelaw.inventionlawISM: cloud0103 physical sciencesSupernova remnant010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Molecular cloudAstronomy and AstrophysicsPlasmaAstronomy and AstrophysicAcceleration of particleSynchrotronX-rays: ISM13. Climate actionSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Observational constraints on the modelling of SN 1006

2011

supernova remnantsISM: individual: SN 1006radiation mechanisms: non-thermalacceleration of particlecosmic ray
researchProduct

XMM-Newton Large Program on SN1006 - I: Methods and Initial Results of Spatially-Resolved Spectroscopy

2015

Based on our newly developed methods and the XMM-Newton large program of SN1006, we extract and analyze the spectra from 3596 tessellated regions of this SNR each with 0.3-8 keV counts $>10^4$. For the first time, we map out multiple physical parameters, such as the temperature ($kT$), electron density ($n_e$), ionization parameter ($n_et$), ionization age ($t_{ion}$), metal abundances, as well as the radio-to-X-ray slope ($\alpha$) and cutoff frequency ($\nu_{cutoff}$) of the synchrotron emission. We construct probability distribution functions of $kT$ and $n_et$, and model them with several Gaussians, in order to characterize the average thermal and ionization states of such an extended s…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsElectron densityAstrophysics::High Energy Astrophysical Phenomenadata analysis cosmic rays ISM: supernova remnants X-rays: ISM [acceleration of particles shock waves methods]FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsacceleration of particles shock waves methods: data analysis cosmic rays ISM: supernova remnants X-rays: ISMSpectral lineInterstellar mediumSupernovaSpace and Planetary ScienceIonizationAstrophysics::Solar and Stellar AstrophysicsSpectroscopySupernova remnantAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Equivalent widthAstrophysics::Galaxy Astrophysics
researchProduct

Modeling the shock-cloud interaction in SN 1006: unveiling the origin of nonthermal X-ray and gamma-ray emission

2016

The supernova remnant SN 1006 is a source of high-energy particles and its southwestern limb is interacting with a dense ambient cloud, thus being a promising region for gamma-ray hadronic emission. We aim at describing the physics and the nonthermal emission associated with the shock-cloud interaction to derive the physical parameters of the cloud (poorly constrained by the data analysis), to ascertain the origin of the observed spatial variations in the spectral properties of the X-ray synchrotron emission, and to predict spectral and morphological features of the resulting gamma-ray emission. We performed 3-D magnetohydrodynamic simulations modeling the evolution of SN 1006 and its inter…

AstrofísicaProper motionMagnetohydrodynamics (MHD)[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Astrophysics::High Energy Astrophysical PhenomenaHadronFOS: Physical sciencesContext (language use)AstrophysicsISM: individual objects: SN 100601 natural sciencesISM: cloudslaw.inventionSettore FIS/05 - Astronomia E AstrofisicalawISM: cloud0103 physical sciencesMagnetohydrodynamic driveSupernova remnant010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy Astrophysicsacceleration of particlesISM: supernova remnantsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsclouds; ISM: individual objects: SN 1006; ISM: supernova remnants; Magnetohydrodynamics (MHD); X-rays: ISM; Astronomy and Astrophysics; Space and Planetary Science [Acceleration of particles; ISM]X-rayAstronomy and AstrophysicsAstronomy and AstrophysicAcceleration of particleSynchrotronX-rays: ISMShock (mechanics)Astronomía13. Climate actionSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Multiple accelerated particle populations in the Cygnus Loop with Fermi-LAT

2021

The Cygnus Loop (G74.0-8.5) is a very well-known nearby supernova remnant (SNR) in our Galaxy. Thanks to its large size, brightness, and angular offset from the Galactic plane, it has been studied in detail from radio to $\gamma$-ray emission. The $\gamma$ -rays probe the populations of energetic particles and their acceleration mechanisms at low shock speeds. We present an analysis of the $\gamma$-ray emission detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope over 11 years in the region of the Cygnus Loop. We performed detailed morphological and spectral studies of the $\gamma$-ray emission toward the remnant from 100 MeV to 100 GeV and compared it with X-ra…

Astrophysics::High Energy Astrophysical Phenomenabrightnesscosmic radiation: energyFOS: Physical sciencesCosmic rayAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeV01 natural sciencesGLASTthermalX-raycosmic raysSpitzer Space Telescope0103 physical sciencesultravioletsupernovaRadiative transferopticalcloudcosmic radiation: acceleration010306 general physicsSupernova remnant010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsacceleration of particlesISM: supernova remnantsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Cygnus LoopAstronomy and Astrophysicsshock wavesGalactic planeGalaxy13. Climate actionSpace and Planetary Sciencegamma raystatisticsspectralgalaxyAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Fermi Gamma-ray Space Telescope
researchProduct

The Highly Collimated Radio Jet of HH 80–81: Structure and Nonthermal Emission

2017

Radio emission from protostellar jets is usually dominated by free-free emission from thermal electrons. However, in some cases, it has been proposed that non-thermal emission could also be present. This additional contribution from non-thermal emission has been inferred through negative spectral indices at centimeter wavelengths in some regions of the radio jets. In the case of HH 80-81, one of the most powerful protostellar jets known, linearly polarized emission has also been detected, revealing that the non-thermal emission is of synchrotron nature from a population of relativistic particles in the jet. This result implies that an acceleration mechanism should be taking place in some pa…

JETS AND OUTFLOWS [ISM]Astrophysics::High Energy Astrophysical PhenomenaCiencias FísicasFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesCollimated lightACCELERATION OF PARTICLES//purl.org/becyt/ford/1 [https]FORMATION [STARS]0103 physical sciences010306 general physics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsJet (fluid)Astronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]Astrophysics - Astrophysics of GalaxiesAstronomíaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASThe Astrophysical Journal
researchProduct

Plasma heating and particle acceleration in collisionless shocks through astrophysical observations

2023

Supernova remnants (SNRs), the products of stellar explosions, are powerful astrophysical laboratories, which allow us to study the physics of collisionless shocks, thanks to their bright electromagnetic emission. Blast wave shocks generated by supernovae (SNe) provide us with an observational window to study extreme conditions, characterized by high Mach (and Alfvenic Mach) numbers, together with powerful nonthermal processes. In collisionless shocks, temperature equilibration between different species may not be reached at the shock front. In this framework, different particle species might be heated at different temperatures (depending on their mass) in the post-shock medium of SNRs. SNR…

High Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E AstrofisicaNuclear Energy and EngineeringFOS: Physical sciencesshock wavesAstrophysics - High Energy Astrophysical PhenomenaplasmasCondensed Matter Physicsacceleration of particles
researchProduct

Collisionless shock heating of heavy ions in SN 1987A

2019

Astrophysical shocks at all scales, from those in the heliosphere up to the cosmological shock waves, are typically "collisionless", because the thickness of their jump region is much shorter than the collisional mean free path. Across these jumps, electrons, protons, and ions are expected to be heated at different temperatures. Supernova remnants (SNRs) are ideal targets to study collisionless processes because of their bright post-shock emission and fast shocks. Although optical observations of Balmer-dominated shocks in young SNRs showed that the post-shock proton temperature is higher than the electron temperature, the actual dependence of the post-shock temperature on the particle mass…

Shock wave010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesElectronAstrophysics01 natural sciencesmagnetohydrodynamics (MHD)Spectral lineIonISM: cloud0103 physical sciencesISM: individual objects: SN 1987ASupernova remnant010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsISM: supernova remnantacceleration of particle0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsX-rays: ISMSupernovaElectron temperatureAstrophysics - High Energy Astrophysical PhenomenaHeliosphere
researchProduct

Particle energization in colliding subcritical collisionless shocks investigated in the laboratory

2022

Context. Colliding collisionless shocks appear across a broad variety of astrophysical phenomena and are thought to be possible sources of particle acceleration in the Universe. Aims. The main goal of our experimental and computational work is to understand the effect of the interpenetration between two subcritical collisionless shocks on particle energization. Methods. To investigate the detailed dynamics of this phenomenon, we performed a dedicated laboratory experiment. We generated two counter-streaming subcritical collisionless magnetized shocks by irradiating two Teflon (C2F4) targets with 100 J, 1 ns laser beams on the LULI2000 laser facility. The interaction region between the plasm…

Plasma Physics (physics.plasm-ph)Settore FIS/05 - Astronomia E Astrofisica[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU]Sciences of the Universe [physics]Space and Planetary ScienceAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and Astrophysicsshock wavesinterplanetary mediumPhysics - Plasma Physicsacceleration of particles
researchProduct

SHOCK-CLOUD INTERACTION AND PARTICLE ACCELERATION IN THE SOUTHWESTERN LIMB OF SN 1006

2014

The supernova remnant SN 1006 is a powerful source of high-energy particles and evolves in a relatively tenuous and uniform environment despite interacting with an atomic cloud in its northwestern limb. The X-ray image of SN 1006 reveals an indentation in the southwestern part of the shock front and the H I maps show an isolated (southwestern) cloud, having the same velocity as the northwestern cloud, whose morphology fits perfectly in the indentation. We performed spatially resolved spectral analysis of a set of small regions in the southwestern nonthermal limb and studied the deep X-ray spectra obtained within the XMM-Newton SN 1006 Large Program. We also analyzed archive H I data, obtain…

Ciencias FísicasAstrophysics::High Energy Astrophysical PhenomenaHadronSynchrotron radiationAstrophysicsSpectral lineISM: cloudIndentationSupernova remnantISM: individual objects (SN 1006)acceleration of particleISM: supernova remnantAstrophysics::Galaxy Astrophysicsacceleration of particlesPhysicssupernova remnants X-rays: ISM [ISM]Astronomy and AstrophysicsX-rays: ISMShock (mechanics)Particle accelerationAstronomíaSpace and Planetary Scienceindividual objects: SN 1006 [ISM]clouds [ISM]CIENCIAS NATURALES Y EXACTASFermi Gamma-ray Space Telescope
researchProduct